The N370S (Asn370-->Ser) mutation affects the capacity of glucosylceramidase to interact with anionic phospholipid-containing membranes and saposin C.
نویسندگان
چکیده
The properties of the endolysosomal enzyme GCase (glucosylceramidase), carrying the most prevalent mutation observed in Gaucher patients, namely substitution of an asparagine residue with a serine at amino acid position 370 [N370S (Asn370-->Ser) GCase], were investigated in the present study. We previously demonstrated that Sap (saposin) C, the physiological GCase activator, promotes the association of GCase with anionic phospholipid-containing membranes, reconstituting in this way the enzyme activity. In the present study, we show that, in the presence of Sap C and membranes containing high levels of anionic phospholipids, both normal and N370S GCases are able to associate with the lipid surface and to express their activity. Conversely, when the amount of anionic phospholipids in the membrane is reduced (approximately 20% of total lipids), Sap C is still able to promote binding and activation of the normal enzyme, but not of N370S GCase. The altered interaction of the mutated enzyme with anionic phospholipid-containing membranes and Sap C was further demonstrated in Gaucher fibroblasts by confocal microscopy, which revealed poor co-localization of N370S GCase with Sap C and lysobisphosphatidic acid, the most abundant anionic phospholipid in endolysosomes. Moreover, we found that N370S Gaucher fibroblasts accumulate endolysosomal free cholesterol, a lipid that might further interfere with the interaction of the enzyme with Sap C and lysobisphosphatidic acid-containing membranes. In summary, our results show that the N370S mutation primarily affects the interaction of GCase with its physiological activators, namely Sap C and anionic phospholipid-containing membranes. We thus propose that the poor contact between N370S GCase and its activators may be responsible for the low activity of the mutant enzyme in vivo.
منابع مشابه
Glucosylceramidase mass and subcellular localization are modulated by cholesterol in Niemann-Pick disease type C.
Niemann-Pick disease type C (NPC) is characterized by the accumulation of cholesterol and sphingolipids in the late endosomal/lysosomal compartment. The mechanism by which the concentration of sphingolipids such as glucosylceramide is increased in this disease is poorly understood. We have found that, in NPC fibroblasts, the cholesterol storage affects the stability of glucosylceramidase (GCase...
متن کاملCharacterization of human glucocerebrosidase from different mutant alleles.
Human cDNA was mutagenized to duplicate six naturally occurring mutations in the gene for glucocere-brosidase. The mutant genes were expressed in NIH 3T3 cells. The abnormal human enzymes were purified by immunoaffinity chromatography and characterized. The Asn370----Ser mutant protein differed from normal enzyme in its inhibition by both conduritol B epoxide and glucosphingosine demonstrating ...
متن کاملMolecular basis of reduced glucosylceramidase activity in the most common Gaucher disease mutant, N370S.
Gaucher disease is caused by the defective activity of the lysosomal hydrolase, glucosylceramidase. Although the x-ray structure of wild type glucosylceramidase has been resolved, little is known about the structural features of any of the >200 mutations. Various treatments for Gaucher disease are available, including enzyme replacement and chaperone therapies. The latter involves binding of co...
متن کاملThe N-terminal segment of pulmonary surfactant lipopeptide SP-C has intrinsic propensity to interact with and perturb phospholipid bilayers.
In the present study, 13-residue peptides with sequences corresponding to the native N-terminal segment of pulmonary SP-C (surfactant protein C) have been synthesized and their interaction with phospholipid bilayers characterized. The peptides are soluble in aqueous media but associate spontaneously with bilayers composed of either zwitterionic (phosphatidylcholine) or anionic (phosphatidylglyc...
متن کاملGaucher disease due to saposin C deficiency is an inherited lysosomal disease caused by rapidly degraded mutant proteins.
Saposin (Sap) C is an essential cofactor for the lysosomal degradation of glucosylceramide (GC) by glucosylceramidase (GCase) and its functional impairment underlies a rare variant form of Gaucher disease (GD). Sap C promotes rearrangement of lipid organization in lysosomal membranes favoring substrate accessibility to GCase. It is characterized by six invariantly conserved cysteine residues in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 390 Pt 1 شماره
صفحات -
تاریخ انتشار 2005